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APPLICATION OF THE METHOD OF INTEGRAL RELATIONS TO
SUPERSONIC NONEQUILIBRIUM FLOW
PAST WEDGES AND CONES

By Jerry C. South, Jr.
Langley Research Center

SUMMARY

The method of integral relations is used to calculate supersonic nonequi-
librium flow past wedges and circular cones at zero incidence. Vibrational
relaxation in a pure diatomic gas i1s considered so that the results can be com-
pared with existing calculations using the method of characteristics. The
approach taken is similar to that followed previcusly in ideal-gas problems,
except that the isentropic law cannot be used and the vibrational rate equation
is included. The governing equations are converted to approximate systems of
ordinary differential equations which are solved as initial-value problems on a
high-speed digital computer. Alternate procedures are discussed which point
out certain features of general importance.

Numerical results are presented to illustrate the convergence and accuracy
of the method in predicting the distributions of flow variables during the
approach to equilibrium. The calculations are performed through the third
approximation for the wedge and through the second approximation for the cone.

INTRODUCTION

The method of integral relations (ref. 1) is a numerical analysis technique
for solving the nonlinear equations of gas dynamics. Specifically designed for
high-speed computing, the method has been shown to be useful and versatile in a
variety of problems. Most applications have been in mixed flows, such as the
sonic flow past ellipses and ellipsoids (ref. 2) and the supersonic blunt-body
problem (refs. 3 to 9). Other important applications have been made to conical
flows wighout axial symmetry (ref. 10) and to the viscous boundary layer

ref. 11).

In the aforementioned works the gas was considered to be ideal; thus, an
obvious step would seem to be the extension of this method to include real-gas
effects in hypersonic flow problems. There do not appear to be any obstacles
to such an extension in the case of equilibrium thermodynamics. The entropy is
still conserved along the streamlines and, therefore, the stream function can



be used advantageously (refs. 3 and 6). Usually the variations of equilibrium
flow properties across the shock layer are no more nonlinear than are those in
ideal-gas cases. In nonequilibrium flows, however, there are some difficulties:
the isentropic law is not valid and cannot be used; chemical and vibrational
rate equations must be included; and shock-layer profiles can be highly non-
linear. This last difficulty is particularly important to a basic feature of
the method: the assumption of interpclation polynomials for certain groupings
of the flow variables. The nonlinear profiles may be poorly approximated by
low-degree polynomials and might considerably retard the convergence of the
method. On the other hand, the integral relations effect a "smoothing" of pro-
file irregularities (ref. 11); thus it seems possible that some significant
results might be obtained in low-degree approximations.

Two applications of the integral relations to nonequilibrium flow calcula-
tions have recently appeared. Shih et al. (ref. 12) used the first approxima-
tion to calculate hypersonic flow of a five-component (N2,02,N,O, and NO) dis-
sociating gas past a sphere. Some of the different procedures necessary for
nonequilibrium calculations, as compared with previous ideal-gas work (refs. 3
to 9), were emphasized, particularly in regard to the starting conditions at the
axis of symmetry.

South (ref. 13) applied the integral relations to supersonic, nonequilibrium
flow past wedges and cones, where the molecular vibrations are relaxing. As in
reference 12, only the first approximation was considered, but the results for
shock-wave shape and surface pressure distribution compared favorably with cal-
culations based on the method of characteristics (supplied by R. Sedney and
N. Gerber of the Ballistic Research lLaboratories, Aberdeen Proving Ground). In
reference 13 the vibrational relaxation time was assumed to be constant through-
out the wedge or cone shock layer to eliminate dependence on experimental results
for the relaxation time. The computational program was later modified to account
for a pressure- and temperature-dependent relaxation time, and the first approxi-
mation results were found to be adversely affected. Similar unpublished calcu-
lations made at the Langley Research Center using the Lighthill-Freeman dissoci-
ating gas model showed that the first approximation was inadequate. It appears
that in many problems approximations higher than the first may be needed.

In the present paper, the work of reference 13 i$ extended to higher approx-
imations in a straightforward manner. The prime objective is to observe the
resulting gains in overall accuracy, with emphasis on certain important features
of the method of integral relations that have not been evident previously.

SYMBOLS

Cp frozen-flow specific heat at constant pressure
E vibrational energy
Eeq equilibrium vibrational energy



nonhomogeneous functions in equations (1) to (%), used in equations (1k4)

to (19)

functions differentiated with respect to y in equations (1) to (4),
used in equations (14) to (19)

0 or 1 for a wedge or a cone, respectively

v
p/P

frozen-flow Mach number,

order of approximation (number of strips)
pressure

functions differentiated with respect to x 1in equations (1) to (4),
used in equations (14) to (19)

gas constant
radial coordinate normal to cone axis
temperature

velocity component in x- and y-direction, respectively

total velocity, \’uz + ve

coordinate along and normal to body surface, respectively
integration step size

shock-wave angle

ratio of frozen-flow specific heats

shock-layer thickness in y-direction

Eeq—E

vibrational driving force, =

characteristic vibrational temperature

wedge or cone half-angle
shock-layer included angle, B - 6

density



“

T vibrational relaxation time

¥ stream function

Subscripts:

0 free-stream quantity

i 1,2,3,4 (refers to continuity, x-momentum, y-momentum, and rate equa-

tions, respectively)

0 surface quantity; see definition of subscript k

k 0,1,. . .,N-1,5 (denotes a particular strip boundary as labeled in
fig. 2)

o) shock~wave quantity; see definition of subscript k

Primed guantities are dimensional; unprimed quantities are dimensionless,
as shown after equation (6).

Barred quantities are corrected surface flow variables.
PROBLEM DESCRTPTION

The physical problem to be studied is the steady supersonic flow of a pure
diatomic gas past symmetric wedges and right circular cones. The flow is
inviscid and the only dissipative mechanism is the relaxation process of the
molecular vibrations. This is then the same problem studied in references 1k4
and 15 by using the method of characteristics. There are several reasons why
this model is well suited to the objectives of the present study. The governing
equations are relatively simple in form, yet the physical problem is highly non-
linear and exhibits many of the important features of more complex nonequilibrium
flows. The added difficulties which arise in the blunt-body problem (refs. 3 to
9 and 12), such as unknown initial conditions and multiple singular points, are
not encountered here. This is a great advantage in numerical calculations,
particularly in higher approximations. Finally, it seems worthwhile to point
out that radiation heating problems (refs. 16 and 17) have caused a renewed
interest in pointed configurations, such as the wedge or the cone, for the
design of hypersonic vehicles.

Basic Equations

The flow geometry and coordinate system are illustrated in figure 1 for a
cone. A body-oriented coordinate system, with x and y the coordinates along
and normal to the body surface, is used so that the X-axis is inclined to the
stream direction by the angle 6 and coincides with the wedge or cone surface.
The wedge or cone tip lies at the point (0,0). The basic equations are as
follows (ref. 13):

4



Continuity:

X

X-momentum:

gl(purj) + é%(pvrj> =0

9 2) pd 5( j) i e _
-\ p + pus)r + —={puvr - jJpsin® =0
axlg ) oy
y-momentum:
ji(puvrj) + 9 (p + pv2)rj - jpcos B8 =0
ox oy .
Vibrational rate:
0 ) 8( j) J_
= (puBrd ) + =(pvErJ]) - perY =0
BX(Q dy
Energy:
T+E+————7_1Mm2(u2+v2>=l+7;lM°°2
State:

M2p = pT (6)

where j = 0 or 1 for a wedge or cone,
respectively, and r = x sin 6 + y cos 0.
The variables and coordinates have been
nondimensionalized as follows:

' 1 t
u,v:}l_L:,—-- pz_L'e p:-p_'
Voo pco'\foo pcn
1 1
] =L xy=Xd
T ¢p T L

The primes denote dimensional
quantities. The length scale L' 1is
taken to be Ve 7'(0,0), where 7'(0,0)

is the vibrational relaxation time on
the surface at the wedge or cone tip.
It is assumed, as in references 14
and 15, that

pirt « exp(ct/m )3 (7)

(1)

(2)

(3)

(&)

(5)

Streamline

Figure l.- Flow geometry and coordinate
system for a cone.

)]



where the constant C' is determined from experimental data. The vibrational
"driving force" € appearing in equation (4) is (as in refs. 1L and 15)

Eeq - E
e =24~ (8)
-

where T = T'/T'(O,O) and Eeq 1s the vibrational energy that the flow would

have locally if it were in equilibrium at temperature T and is taken to be
-1

oy exp@E) i ] (9)

The factor 2/7 is the ratio R'/%p' for an ideal diatomic gas (y = 7/5).

Eeq =

Y

Boundary Conditions

It is assumed that the molecular vibrations are frozen across the shock
wave and that E, = O; then, at the shock curve, or y = &(x),

E(x,8) = Eg(x) = 0 (10)

The ideal-gas shock-wave relations apply and the other variables can be deter-
mined as algebraic functions of My, 6, and the shock-wave angle B(x). The

necessary relations are listed in appendix A.

The location of the shock curve is determined by

9B _ tan A (11)
dx
where A =B - 8, and the shock wave is attached at the body tip so that
5(0) = 0 (12)

The wedge or cone surface is a streamline; thus

v(x,0) = vg(x) = 0 (13)



APPROXTMATE SYSTEMS

The method of integral relations provides a logical procedure for con-
verting equations (1) to (4) to approximate systems of ordinary differential
5 equations, which are readily adaptable to
N-1 electronic digital computing. The conversion
procedure for the present problem is the same
as that used in previous ideal-gas, mixed-flow

9 studies (refs. 1 and 3). The first approxi-
S mation was derived in detail in reference 13,
Shock wave ~ _ 1 and higher approximations used herein are

h o sStraightforward extensions of that work.

Equations (1) to (&) are in the diver-
gence form - that is,

“~~Surface

991 + égl - Fi =0 (i = 1)2)3)4) (lu)

ox Jy

where the appropriate functions @Q;, Gy, and
F; can be seen by inspection of equations (1)
to (4). 1In the Nth approximation the region
of flow between the shock wave and body sur-
face is divided into N equal strips,
arranged as in figure 2. Each of equa-

tions (14) is integrated from the surface

(y = 0) to the boundary of each strip. The
result is (for the present problem) LN inte-
gral relations, as follows:

Figure 2.- Nth-strip arrangement.

y y
a k dy k
= k/; @ dy - @1,k E;E +Gi,x - Gio - k/; Fi dy =0 (15)

(i = 1:2)3)4)
(k = 1,2,. . .,N-1,3)

To evaluate the unknown integrals, Nth-degree interpolation polynomials in y
are assumed for the functions Q3 and Fy; for example,

N
Q) = EE: qi,nyn (16)

where the coefficients gq; , depend linearly on the x-dependent functions Qi,k-

An approximate system oOf N ordinary differential equations is finally obtained,
where x 1is the independent variable.



Corresponding to the general form indicated by equations (14), the first
three approximations (N = 1,2,3) can be written as follows:

= 1:2:3:h)

=
il

e

—
[N
I

dQ; d9; 5 d
5 —20 + & _:_ + (Qi,o - QLB)E;% - 2<Gi,0 - Gi,B) - 6(Fi,o + Fi,a) =0

dx
(17)
N=2: (i=1,2,3,4)
491 ;0 e ) as
) dx, -3 d_x, + (Qi,o - uQi,l + 5Qi,8>a
- )-l-(Gi’O - 2G1’l + Gi,5) - S(Fl,o - Fi,&) =0 (188.)
deg 1 dQ; s
285 d_X’ + 8 dj:l;, + )-I-(Qi 1 - Q'i 5)
-Gi,0 - hGi,l + 5Gi,5 - 8(2Fi,l + Fi’g) =0 (18b)
N =3 (i=1,2,3,k4)
494 ;0 d9; |5 s
5 > 80—+ (28,0 - 98,1 ¥ 380y o - 14y ) T
- 13G1,0 + 27G1,1 - 27Gi,2 + 13Gi ,5 ~ 25<Fi,0 + Fi,§> =0 (19a)
dQj ;1 dQj |5 s
38 dx’ -3 dx’ + 6(Qi’l -2 o+ Qi:f’)&_
- 26y 0 - 94,1 + 2865 o - TG4 5 - 5<3Fi,1 - Fi,a) =0 (19p)
65ﬂL+26__Q}J_+3 +4 5 -5 s
= Q1 * %4 0 - 59 5) 5%
+ Gi,O - 9Gi’l - 9Gi,2 + l7Gi,5 - 25(53‘1,2 + Fi,a) =0 (]_9(:)



The second subscript refers to a particular strip boundary, as indicated in
figure 2. Since the shock-wave functions Qi,S are functions of B (and ry
when j = 1), equations (17) to (19) were manipulated so that derivatives of
Qi,B and only one other function, Qi,k (x = 0,1,. . .,N-1), appear 1in each
equation. This form is algebraically convenient because dp/dx can be obtained
easily from the single equation containing dQB,o/dx and dQB,S/dx (e.g.,

eq. (17), (18a), or (19a)) by noting that Q5,0 = PoloVp = O for all values

of x. The algebra required to obtain the remaining derivatives of wug, vy,
etec., 1s considerably simplified. Further details are given in appendix B,

where the final computational equations are derived for the second approximation,
N=2.

It should be noted that in the approximate systems the functions Qi,k

contain the factor rkJ. If the derivatives of rkJ are expanded and the equa-
tions are then divided by roj, the resulting differential equations for the

cone are very similar to those for the wedge, with some added terms (for example,
see ref, 13 for N = 1 and appendix B for N = 2).

Tip Solution

The condition that the shock wave is attached, or 8&(0) = O, causes the
coefficients of the derivatives to vanish at the tip of the wedge or cone. If
a regular solution exists, it is necessary that the remaining terms also vanish
at x = 0. This condition yields UN algebraic equations in the 5N unknowns:

B o, - -5 UN_13 Vise o > VN-1% Pose - -5 Py.13 Pgre - +» Py-17 and
Eose « «» Eng-oa (u5, vy, ete., are considered to be functions of B through

the shock-wave relations, with M, and 6 specified). Eliminating Ty between

equations (5) and (6) on each strip boundary gives N additional equations; this
step completes the initial solution.

The N algebraic equations which correspond to the rate equation (i = 4)
together with equation (10) yield Ejp = 0; that is, the flow is frozen through-

out the shock layer at the wedge or cone tip. The remaining equations yield the
exact solution for frozen flow over a wedge when Jj = O; that is, uy = uy,

Vg = Vg =0, Dy = Py, etc. When Jj = 1, an approximate solution for frozen

flow past a cone is obtained, and this solution is especially interesting.

In the classical problem of supersonic frozen or equilibrium flow past an
axisymmetric cone, similarity considerations show that the shock wave is straight
and that flow properties are constant along rays emanating from the tip. Appli-
cation of the same considerations to the approximate systems for the continuity
and momentum equations is straightforward, since all strip boundaries are
straight rays when the shock is straight. Discarding the x-derivatives of the
flow variables along the strip boundaries yields the same solution for all
values of x as the limit solution (x — 0) mentioned previously. This



particular application of the integral relations was also pointed out by Chushkin
and Shchennikov (ref. 10). It is worth noting that where the exact classical
solutions result from a boundary-value problem for nonlinear ordinary differen-
tial equations, the integral relations yield nonlinear algebraic equations which
are solved by trial and error. Some results of these solutions are shown in
figure 3, wherein the first (N = 1) and second (N = 2) approximations for frozen
flow over a cone are compared with the exact solution (ref. 18). In reference 19
it was shown that the first approximation agrees well with the exact solution
(ref. 20) for full equilibrium airflow over a cone.

90 F
S
~._M =105 -
801 =~
S
N~ 10.0
=~ — 4.0 .
70 . S
60 -
50
B, deg
40+
30 Exact (ref. 18)
[} N=1
20 ° N=2

J ) | | | | | 1 { _
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
6, deg

Figure 3.- Shock-wave angle as a function of cone half-angle for frozen flow.

For the present problem in which the entire shock layer is supersonic,l
the initial values of the flow variables are completely determined by the approx-
imate systems and the shock-wave relations. Since the original partial differ-
ential equations are of hyperbolic type (ref. 22), the integral relations prop-
erly form an initial-value problem. (In the blunt-body problem, with subsonic
flow in the nose reglon and supersonic flow on the afterbody, the partial differ-
ential equations are of mixed (elliptic and hyperbolic) type; and the integral
relations thus form a boundary-value problem (refs. 3 to 8).)

1at a given value of M, > 1, there exists a limited region of wedge or

cone angles which are smaller than the detachment angle, yet subsonic flow
occurs in the shock layer (ref. 21, p. 683). This situation is excluded in the
present formulation.

10



The initial derivatives at x = O can be evaluated by differentiating the
approximate systems once more and taking the limit (x — 0). The initial deriv-
atives so obtained for the wedge are exact in all approximations. This result
is not surprising, since the frozen-flow variables at the wedge tip are constant
in the interval 0 <y £ & (and & - 0); thus, the interpolation polynomials
assumed for pu, puv, etc., are exact at x = 0. The wedge initial derivatives
on any strip boundary are derived in appendix C.

The present method also yields linear algebraic equations for the cone tip
derivatives. The approximate expressions are more lengthy than those for the
wedge and are not given herein; they are given in reference 13 for N = 1. The
exact solution for the cone tip derivatives can be obtained in a manner similar
to that for the wedge (see appendix C) by solving a boundary-value problem for
linear ordinary differential equations. The integration must be performed
numerically, however, since the variable coefficients of the differential equa-
tions depend on the nonlinear conical-flow solution. The present approximate
calculations for the cone tip derivatives for N = 2 were found to be in excel-
lent agreement with exact numerical solutions recently obtained by R. Sedney and
N. Gerber of the Ballistic Research Laboratories, Aberdeen Proving Ground.

Nonconvergence of the Rate Equation

At large distances from the wedge or cone tip, it can be intuitively rea-
soned that throughout most of the shock layer the flow variables should approach
their equilibrium values - that is, those values which arise from assuming zero
relaxation time behind the shock wave. For a finite relaxation time, there are
three zones which appear in the flow: (1) a relaxation zone just behind the
shock wave, (2) an equilibrium zone between the shock wave and surface, and
(3) an entropy layer adjacent to the surface (ref. 14). Far from the tip, the
equilibrium zone (2) will occupy most of the shock layer so that by comparison
the relative thicknesses of zones (1) and (3) appear to be negligibly thin.
Zones (1) and (3) do not actually disappear, however, and this feature causes
difficulty in any calculation scheme. For example, the flow variables at the
surface, excepting the pressure, do not reach the same equilibrium values as in
zone (2), and the flow variables at the shock are always frozen even at X = o.
The profiles of the flow varlables across the shock layer thus approach Jjump
discontinuities at both the shock wave and surface as X — o,

In the present method, this difficulty is evidenced in the approximate
systems for the rate equation (1 = 4). The vibrational driving forces e

along the strip boundaries appear in the Fh,k terms of the approximete sys-

tems. Each of those driving forces should tend to zero as x increases, with
the exception of the shock-wave driving force eg. The boundary condition at
the shock wave (eq. (10)) gives for all values of x

E
e5=—$‘h-§>o (20)
5

11



A closer examination of the approximate systems reveals that the coefficients
of the physical-variable derivatives contain the factor Srkj which is of the

order xl+J for large values of x. In the approximate rate equations, the
SFh,k terms (= Srkjpkek> are also of the order x1*tJ. Then equating the coef-

ficients of x1*tJ (that is, comparing the dominant terms for large values of x)
leads to the following conclusion: the physical derivatives along the strip
boundaries can decay to zero as x increases only 1if ¢ (k % 8) approach
unrealistic nonzero values to counter the always-positive contribution of €g5-

This effect is the most severe in the surface rate equation (e.g., eq. (17),
(18a), or (19a)) since, as x — o,

J
€g - % <;§> gé €5 (21)
0 0]
or
By — E . (T8 870 E (22)
0 ~ %eq,0 — (?8> 56;5 eq,d

where the plus sign corresponds to N = 1 and 3 and the minus sign corresponds
to N = 2. Equation (22) predicts alternating "overshoots" (+) and "undershoots"
(-) of about equal magnitude in the asymptotic value for Ep. The problem is

less severe at the interior strip boundaries, since the Fj j terms (x £ 0,8)
recelve more weight than the Fh,& terms. For example, in equations (19b)

and (19c) Fy,1 and F) p are weighted three times as much as Fy 5.

NUMERICAL RESULTS

Three different numerical cases are presented to illustrate the accuracy
and convergence of the method. The conditions for each case herein correspond
exactly to the conditions for the calculated examples reported in references 1k
and 15. Thus, the results obtained by using the method of integral relations
can be directly compared with those obtained by the method of characteristics.
For all cases the free-stream temperature is 300° K and the gas is pure nitrogen
(8y = 11.12). The constant C = C'/T,' used in the expression for the vibra-

tional relaxation time (eq. (7)) was obtained from the authors of references 14
and 15. The numerical cases are as follows:

Case T - Wedge: My, =6, 6 = 40.02°, C = 0.4655 x 10k

Case IT - Cone: M, = 12, © = 46.39°, ¢ = 1.0137 x 1o*

Case ITII - Cone: M, = 10, 6 = 53.82°, C = 1.0137 x 1o*

12




Hyperbolic Stability Criterion

In reference 13 only the first approximation was considered, and no numer-
ical stability problems were encountered in cases I and II. In case III the
initial Mach number (based on the frozen speed of sound) on the cone surface
My was about 1.08, and all attempts at integration away from the tip failed.

It was believed that the instability was caused by the fact that Mg =1 1is a

natural singular point of the system. The higher approximations were later
discovered to be unstable not only in case III but also in cases I and II
(Mo = 1.% and 1.7, respectively). The problem was finally resolved by applying

a hyperbolic stability criterion, as follows: Consider the two-strip (N = 2)
calculation for flow past a wedge, schematically illustrated in figure 4. Three
data points along the surface normal are

computed at each integration step: at

the shock, at the middle line, and on

the surface. The left-running (Ct) and

the right-running (C-) Mach line charac-

teristics emanating from the three ,~Mach line characteristics
points intersect downstream approxi-
mately as shown at some point (x + Ax).
For a stable calculation, the local

step size must not be greater than that
given by the approximate characteristic
mesh. For the purpose of obtaining an
approximate criterion, it is assumed
that all the streamlines are parallel to
the surface and the local Mach number is
equal to Mp. The geometry then gives

for N =2

A
o
3
—

V
V
/ i

A

o 5§ - 2

By the same reasconing it can be shown
that for any value of N

1/2

Ax < %(Mf - 1) (2k)

Figure 4.- Approximate hyperbolic stability
. . . criterion (N = 2).
Since the criterion given by equa-

tion (24) is approximate, it is usually necessary to use some fraction of that
criterion to insure success. The criterion cannot be applied at the initial
step since 8&(0) = 0; therefore, a single linear step is taken at x = 0, and
the criterion is applied thereafter.

In figure 5 the calculated surface pressure distribution near the wedge tip
is shown for case I and N = 2. The solid curve is an unstable calculation using

13



.588 —- ——
N T 2; fixed step size: A)i =0.001
— — — — N = 2, stability criterion applied
.586
—
e ~ -
~ -l - -
—~ —
B /l
.584 A
%Fm » 0,001 satisties criterion beyond x=0.013

.582 1

0 .01 .02 .03

X

Figure 5.- Effect of hyperbolic stability criterion. Case I.

a first-order Euler integration procedure with a fixed step size Ax of 0.001.
For the initial conditions of this case, that step size satisfies the N = 2
stability criterion when x > 0.0l13. Note that the solution stabilized at that
point. The dashed curve 1s also a first-order Euler integration with an initial
step size Ax of 0.001, but the N = 2 stability criterion was applied at
every successive step, and the results are stable.

The stability criterion was included in the computational program used in
reference 13, and case III was successfully integrated. In reference 13 cases I
and IT were integrated (for N = 1) without the stability criterion because the
automatic step-sizing bullt into the Runge-Kutta integration scheme was able to
satisfy the N = 1 criterion within the first few steps.

Pressure Distribution and Shock-Wave Shape

Calculations for the wedge (case I) were performed for N = 1, 2, and 3.
For the cone, the algebraic sclutions which give the initial values and deriva-
tives are far more tedious in higher approximations than for the wedge; there-
fore, cone calculations for N = 3 were not attempted.

14



The results for surface pressure distribution po(x) and shock-wave shape
B{x) are shown in figures 6 to 8, together with the characteristics calculations

59
Method of characteristics (ref. 14)
————— N-1) .
—— N-=- ZfMethod of integral relations
N=3
Equilibrium ~(
\\
Lm0 e O D e e O o O aa amaO = [ VORI ¢ W _J_Q
1
(a) Surface pressure Pg as a function of x.
54 ] 1 ] 1 B ] 1 ]
581
B, deg
Equilibrium<
AN
\
buniuny, Wi o UNEN - 18 ‘én__
541~
(b) Shock-wave angle B as a function of x.
53 1 ] 1 1 1 1 1 3
0 1 2 3 4 5 6 7 8

X

Figure 6.- Pressure distribution and shock-wave shape for a wedge. Case I.
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of references 14 and 15. The short horizontal line at the right of each figure
indicates the level for vibrational equilibrium (T*' = 0) flow. For the three

.562
.558
o Method of characteristics (ref. 15)
- z : ; Method of integral relations
Equilibrium -~
554 —
po 0 o o o o o o
] ] &) v
.550
S~ \\
\\\ -

546} T~

(a) Surface pressure P, 8sa function of x. T~
542 1 I | 1 I 1 1 J
53.5r
53.0
52.5

B, deg
52.0
Equilibrium ~ _
~a —0
~
~ S~
515 ~ ~ - -
\\
\\ - - -

(b) Shock-wave angle 8 as a function of x. T~

510 ] I 1 1 | 1 | il
0 1 2 3 4 5 6 7 8

X

Figure T.- Pressure distribution and shock-wave shape for & cone. Case II.

16




is adequately described by N = 2, and
the accuracy of N = 2 1is considerably
improved compared with that of N = 1. 04
The nonconvergence of the surface vibra-
tional energy, explained previously, has

cases most of the approach to equilibrium _7if

o Method of characteristics (ref. 15)

— m : ;}Method of integral refations

a detrimental effect on the asymptotic 700}

values of all the variables, but the

effect decreases as N increases. %o Equilibrium-.
Figure 9 illustrates the surface 696

vibrational-energy distribution Eg(x)

for case I. The erroneous overshoots and
undershoots mentioned earlier are clearly 692
evident.

.688 |-
Improvements for Certain

a iable .684- . b .
Surface Variables o 1 2 3 s 5
In reference 13 it was pointed out Figure 8.- Surface pressure distribution
that the approximate differential equa- for a cone. Case ILIL.

tions are not equivalent to the correct
x-momentum and streamline rate equations at the surface - that is,

du g
Mo . __1 o (25)
dx Polo dx
and
9o _ S (26)
dx Yo

The discrepancy occurs in all approximations largely because the integral rela-
tions must account for v{(dou/dy) and v(JE/Jdy) throughout the shock layer.
As was shown in reference 13, equations (25) and (26) can be used together with
equations (5) and (6) to give improved distributions Ug(x), Eol(x), Tp(x),

and Eb(x), consistent with the pressures po(x) obtained from the approximate
equations. The corrected surface vibrational-energy distribution Eb(x) is

shown in figure 9, and the improvement is excellent. A note of caution is nec-
essary, however: the corrected surface variables Gb, Ep, etec., are obtained

in addition to the corresponding original variables wug, Eg, ete. It is

tempting to replace the two approximate differential equations for ugy and Eg

by the exact equations (25) and (26). Such a "hybrid" procedure was used in the
nonequilibrium blunt-body study of reference 12, and it was tried in the early
stages of the present work. In the present application, the hybrid procedure
always produced an unstable system. Unbounded oscillations of the derivatives
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Figure 9.- Surface vibrational-energy distribution for a wedge. Case I.

occurred near the tip, regardless of the hyperbolic stability criterion used.
It was found that if only the approximate differential equation for Ey was
discarded and replaced by equation (26), the solutions were stable, but the
overall results were poor compared with those obtained by using the original
approximate equations.
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x,¥ Coordinates

It is known that the choice of dependent and independent variables is impor-
tant in low approximations of the method of integral relations. If, for example,
spherical polar coordinates are used for the cone solution (frozen or equilibrium
flow), the results are less accurate for N = 1 than the corresponding results
for the body-oriented x,y coordinates (see fig. 2 of ref. 13).

Since streamlines have a major role in nonequilibrium flows, the x,y
coordinates were transformed to x,¥ coordinates, where YV is the stream func-
tion. The integral relations were redeveloped for the wedge (j = O) and N = 2.
No particular advantage was evident since the strip boundaries are not stream-
lines, and there was no difference in the numerical results for case I obtained
by use of either the x,¥ or the x,y coordinates.

56 T

Shock-Iayer Profiles

Even in higher approximations, the
details of the nonequilibrium flow
between the shock wave and the body sur-
face are not described accurately. At
any downstream station x there are
only N + 1 points along a normal to
the surface from which flow-variable
profiles can be obtained. Likewise, the
poor asymptotic behavior, discussed pre-
viously, causes considerable error in

the most interesting variable, T. In
references 12 and 135 streamlines were
used to obtain better details for N =1.

Figure 10 illustrates the profiles
of pressure and temperature obtained in
reference 15 for case II at a station
X = 9.0. The three points given by the
integral method for N = 2 are also
shown in the figure at a station x = 8.0
(the present calculations were not car-
ried farther). Although the pressures
agree reasonably well, the temperatures
do not. The corrected surface tempera-
ture (ref. 13) Tp is shown to agree

well with the characteristics result.

It appears that, if accurate
details of the temperature and density
profiles are required, additional cal-
culations must be carried out along
streamlines by using a procedure like

.52

51

19

Characteristics method: x = 9.0

— — ~— Equilibrium conical flow

[e]

Integral method: N =2, x = 8.0
1 ! 1 1 1 |

}(ref. 15)

4

that described in reference 13. Figure 10.- Pressure and temperature pro-

files for a cone. Case II.
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CONCIUDING REMARKS

The method of integral relations has been used to calculate supersonic,
vibrationally relaxing flow past wedges and cones. Comparison of these calcula-
tions with characteristics calculations showed that the second, or two-strip,
approximation was accurate for most of the approach to equilibrium. The asymp-
totic value of the surface vibrational energy did not converge to the correct
value in higher approximations. The other flow variables were rather insensitive
to this discrepancy, however, and the erroneous surface energy distribution was

corrected.

For the present problem, in which the entire shock layer is supersonic,
the original partial differential equations are of hyperbolic type. The approx-
imate systems of ordinary differential equations correctly posed an initial-
value problem. Control of the integration step size was necessary to achieve
numerically stable solutions; the stability criterion is related to the hyper-
bolic characteristic curves.

It was found that the exact forms of the momentum and rate equations along
the body surface could not be used in lieu of their counterparts in the approx-
imate systems. Such a hybrid procedure always produced unstable numerical
results near the wedge or cone tip.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 4, 196.4.
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APPENDIX A
FROZEN SHOCK-WAVE RELATIONS

The appropriate frozen shock-wave relations are given for 7y = 7/5
(ref. 18). Let

B(B M) = M sin2p (A1)
a(B,Me) = —25(b - 1) (42)
EMeo
then

u(x,8) = ug = (1L - a)cos 8 + a cot B sin @ (A3)
v(x,8) = vy = -(1 - a)sin 8 + a cot B cos © (Ak4)
p(x,8) = pg = 2222 (45)

oM 2

6b

p(x,8) = Py = 5+ b (A6)

The B-derivatives of equations (A3) to (A6) are also required explicitly and
they are, respectively,

d .
B2 cos B sin A - asin® (A7)
dp 3 sinp
d
'8 25 cos B cos A - 2S5 8 (48)
ag 3 sin°p
d:
Egg = % sin B cos B (A9)
dos _ 60b cot B (A10)

¥ (5 +1)°

)
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APPENDIX B
COMPUTATTIONAL EQUATIONS FOR -N =2

Before the final computational forms of the approximate systems are
obtained, the derivatives of the functions Q; x must be further expanded in

terms of wuy, vy, Pk, Py? Eyx, and rkj. The functions at the shock wave
Qi,6 are explicit functions of § (and rg when Jj = 1) so that in,§/dx
can be expressed in terms of the single derivative dB/dx (and dra/dx when
j=1). For example,

W 5 . d drg
’ _ .
= rgd _—(p8u5v6> + JogusVy =— (Bla)
or
d93 3 ; a dp
_ . J sl s
2- = (x sin 6 + & cos 0) Eg(psuava)——-+ j(sin 6 + tan A cos 8)pglsVs

(B1b)

In any approximation the equation which contains dQB’O/dx and dQ3 a/dx will
2

yield the required expression for dp/dx by using equations (Blb) and (11) and
by noting that QB,O = PopVp = 0 for all values of x. Treating dB/dx (and

thus in,a/dx> as a known algebraic quantity effects considerable simplifica-
tion, as follows: at each strip boundary the derivatives of the corresponding
variables ug, Vi, Pk, and Ep can be obtained by solution of a 4 by 4 linear
algebraic system. (Egs. (5) and (6) are used to eliminate derivatives of py.)
This feature is emphasized to point out that one does not have to deal directly
with a 4N by 4N system but rather N (4 by 4) systems. The algebra required

for the latter is simple, so that one need not resort to time-consuming inversion
of a 4N by 4N matrix in the computer at each integration step.

The procedures are now demonstrated for N = 2, The derivatives of rkj
are expanded from the functions Qi,k (k = 0,1,8) as. in equation (Bla), and

then equations (18) are divided by roj. Equations (18a) can be written (in the
order i = 3,1,2,4)

&B1H1 %.XE = K1 (B2)
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I o -~

5 ad;(pouo) = Kp (B3)
® d‘i‘(l’o ¥ pouoe) = X3 (34)
S -dd;(pouoEo) = Ky (B5)

and equations (18b) can be written (in the order 1 = 1,2,3,4)

8Bp d—i—(plul) = Ks (B6)

8B %(pl + plu12> = Kg (BT)
o8 (oyuyy) = 7 (28)
8B %(plulEl) = Kg (B9)

where
Kl = —2nglulvl tan A + (B3 tan A - j¢)p8u5v6

(B10)
Hp
Kp = EI Ky - (tan A + J¢)pouO + 2Bppyu; tan A
- (B3 tan A\ - j¢>p8u5 - R(nglvl - Blpavs) (B1YL)
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K—HBK (tan A + j@) + 2) + 2Bo tan A [pq + pyuq°
3 = EI 1 - JP)Po T PoYo 2 1 141

- (BB tan A - J¢> <P8 + p6v82> - )+<B2plulvl - Blp6u2‘>v6) + j¢(p0 - pa)

(B12)
K)+ = -(tan A+ J¢)pouOEo + 2B2plulEl tan N - ll-BQpl'\/':LEl + B(QOGO - Blp6€6>

(B13)

K = - fl-—?— Ky ~ (B)-I- tan A + 2J¢) P1uy + (BLL tan A - j¢>06u5 + EBEDlVl - DB1pgVs
1

(B1k)
Hs

Kg = - ITII Ky - (Bu tan A + 2j¢><pl + plulz) + (Bu tan A - j¢><p5 + p6u52)

+ 2Bppuy vy - DB1pgugVs + j¢(2pl + PS) (B15)

K7 = -K3 - (Bu tan A + 2j¢> Puqvy + (134 tan A - J¢> PgUsVs

+ po + 2B2<Pl + plv12> - 5B1<P6 + p6v52> + j¢ cot 9(2pl + pa) (B16)

Kg = -(34 tan N + 2j¢>plulEl + 2BpoyvqE; + S(nglel + Blp5€5> (B17)
Hy = -(pauave>
Hy = 2 (psu (B18)
2~ 3p\"od
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Bl = 1+ j@ cot é}
B2=Bl+l k
(B19)
Bz = 2B + 1
By = 3B + 1

The variable @ = 8/x is introduced to maintain consistent numerical accuracy
in the ratio 8/x near the cone tip.

The derivatives of pyu, (k = 0,1) are expanded by using equations (5)
and (6) with 7y = 7/5, as follows:

dp du av P 2 §g
d _ 1 2 'k 2 k 2 k , Pk Sk
(B20)
where
-1/2
l.hpk
m = uy 5 (B21)
k
Also,
4 + p. U 2) = EBE + pu dug +u, L(p.u (B22)
=\Px TP T g TPk 3% K 3o \Px%K
d dvy d
a("k"k"k) = P ax T Yk a(pkuk) (B23)
m .
é%(pkukEk) = Pk ggg + By é%(?kuk) (B2k)

Equations (B20) to (B24) are substituted into equations (B3) to (B9) to arrive
at the final equations which (together with eq. (B2)) complete the set for
N=2:
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g _ Ky (B2)

dE;
8B2o; Uy = - Kg - EiKs

dvq
8Bopyuy =

K7 - v1K5

d
8B2(ml2 - 1>&P£ = -<l + l.hmlz)(l% - ulK5> + ulK5

2
dv pju dE
1 171 1
- O.M&BgmlEprl —= - 3Bp TS
dug _ dpl . K6 - ulK5
P17l dx dx o)

(B25)

(B26)

(B27)

(B28)

(B29)

(B30)

(B31)

(B32)



APPENDIX C
EXACT INITTAL DERIVATIVES FOR A WEDGE

Sedney (ref. 22) used natural coordinates to derive exact expressions for
the shock curvature and the gradients of surface flow variables at the wedge tip
caused by vibrational relaxation. A somewhat different approach, which is more
appropriate to the present problem, yields an equivalent solution for dp(0)/dx
and the initial flow-variable gradients along any strip boundary.

The coordinates 1 = y/8 and £ = x are introduced to map the strips
(fig. 2) into rectangular regions, with the shock at n = 1 and the surface at
1 = 0. In the ¢n-plane the wedge tip is the line £ =0, 0 <17 £ 1. Deriva-
tives of p are eliminated from equation (1) by using equations (4), (5), and
(6); the transformed continuity, momentum, and vibrational-rate equations are
as follows:

6<;%§+—g.u§->+(v—uqtan?\)%%-ntan7\§%+g—:=—§T—€- (c1)
8<u%+%%>+(v—uqtan7\)%—ng%—?\%=o (c2)
6u-§§+(v—uqtan7\)g—:+b]:-:—§=o (c3)

6u§—§-+ (v - uy tan x)%%: Se (k)

Equations (Cl) to (Ch4) are differentiated again with respect to £, the
limit as £ and 8 - 0 1is obtained, and the following frozen-flow wedge con-
ditlons are applied:

V(O)n) =0
(c5)

Q/

du _ dv _op _ OE _
'a'—n(oﬂl) = -é;(oﬂl) = 8’1']‘(0)7]) = ‘a"ﬁ(o)n) =0

Then at the wedge tip, that is, along the line ¢ = O,
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%(P_ngri>+<U-n2—U->+cot7\§-V-=—% (cé)

(c7)

je]
o
/?
1
=3
&
~———
+
g
=
&
n
@)

i
O

_SE + pu tan 7\<V - @_) (c8)

Ul

(c9)

where

The boundary conditions are as follows:

At n =1, ~
s ap

U(1) TR

Vs ag
ap  ae

v(1)
(C10a)

dp
HORE o

0

(1) )

and at 1 = 0,
v(0) =0 (c10b)
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The solution of equations (C6) to (C9) with the boundary conditions (C10)
is readily obtained. In terms of the notation of the main text, the wedge
initial derivatives at x = 0 are found to be

e S - (1 - ) amea (c11)
dx k gg Pguy B |dx
dv av.
dx_k = mg —54dg (c12)
ds  dx .
dPx _ %P5 ap (c13)
dx  dB dx
dE €
K _ (1 - le)—a (c1k)
dx ug
. -1
ag _ Ssff 2 1 Ups dvg
& = - E[(MS - ]>p—6u_5 E + cot )\ W (015)
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